Detail publikace

Structuring digital plane by the 8-adjacency graph with a set of walks

ŠLAPAL, J.

Anglický název

Structuring digital plane by the 8-adjacency graph with a set of walks

Typ

článek v časopise - ostatní, Jost

Jazyk

en

Originální abstrakt

In the digital plane Z^2, we define connectedness induced by a set of walks of the same lengths in the 8-adjacency graph. The connectedness is shown to satisfy a digital analogue of the Jordan curve theorem. This proves that the 8-adjacency graph with a set of walks of the same lengths provides a convenient structure on the digital plane Z^2 for the study of digital images.

Anglický abstrakt

In the digital plane Z^2, we define connectedness induced by a set of walks of the same lengths in the 8-adjacency graph. The connectedness is shown to satisfy a digital analogue of the Jordan curve theorem. This proves that the 8-adjacency graph with a set of walks of the same lengths provides a convenient structure on the digital plane Z^2 for the study of digital images.

Klíčová slova anglicky

Digital plane, 8-adjacency graph, walk, connectedness, Jordan curve theorem

Vydáno

16.11.2017

Nakladatel

International Assocoation for Research and Science

Místo

USA

ISSN

2367-895X

Ročník

2017

Číslo

2

Strany od–do

150–154

Počet stran

5

BIBTEX


@article{BUT155735,
  author="Josef {Šlapal},
  title="Structuring digital plane by the 8-adjacency graph with a set of walks",
  year="2017",
  volume="2017",
  number="2",
  month="November",
  pages="150--154",
  publisher="International Assocoation for Research and Science",
  address="USA",
  issn="2367-895X"
}