Detail publikace

Geometric algebras for uniform colour spaces

HRDINA, J. VAŠÍK, P. MATOUŠEK, R. NÁVRAT, A.

Anglický název

Geometric algebras for uniform colour spaces

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

We show the advantages and disadvantages of specific geometric algebras and propose practical implementations in colorimetry. The colour space CIEL∗a∗b∗ is endowed by an Euclidean metric; the neighbourhood of a point is therefore a sphere, and the choice of a conformal geometric algebra is thus obvious. For the colour space CMC(l:c), the neighbourhood is an ellipsoid and thus we choose the quadric geometric algebra to linearize the metric by means of the scalar product. We discuss the distance problems in colour spaces with these particular geometric algebras applied.

Anglický abstrakt

We show the advantages and disadvantages of specific geometric algebras and propose practical implementations in colorimetry. The colour space CIEL∗a∗b∗ is endowed by an Euclidean metric; the neighbourhood of a point is therefore a sphere, and the choice of a conformal geometric algebra is thus obvious. For the colour space CMC(l:c), the neighbourhood is an ellipsoid and thus we choose the quadric geometric algebra to linearize the metric by means of the scalar product. We discuss the distance problems in colour spaces with these particular geometric algebras applied.

Klíčová slova anglicky

clifford algebras; conformal geometric algebra; colorimetry; linearization; uniform colour spaces

Vydáno

30.06.2018

Nakladatel

John Wiley & Sons, Ltd

Místo

United Kingdom

ISSN

1099-1476

Ročník

41

Číslo

11

Strany od–do

4117–4130

Počet stran

14

BIBTEX


@article{BUT148401,
  author="Jaroslav {Hrdina} and Petr {Vašík} and Radomil {Matoušek} and Aleš {Návrat},
  title="Geometric algebras for uniform colour spaces",
  year="2018",
  volume="41",
  number="11",
  month="June",
  pages="4117--4130",
  publisher="John Wiley & Sons, Ltd",
  address="United Kingdom",
  issn="1099-1476"
}