Detail publikace
Influence of the beam deflection od properties of the electron beam hardened layer
MATLÁK, J. FORET, R. DLOUHÝ, I.
Anglický název
Influence of the beam deflection od properties of the electron beam hardened layer
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
en
Originální abstrakt
The usage of the high-energetic source of the electron beam enables a repeated surface quenching of the chosen areas of an engineering part surface. Different techniques of the electron beam deflections allow the creation of hardened layers of different shapes and above all the thicknesses. The deflection was tested at one point, six points, a line and a field on the material 42CrMo4 (1.7225). The effect of the process speed and defocusing of the electron beam was studied. The electron beam surface quenching resulted in a very fine martensitic microstructure with the hardness over 700 HV0.5. The thickness of the hardened layers depends on the type of deflection and depends directly on the process speed. The maximum observed depth was 1.49 mm. The electron beam defocusing affects the width of the hardened track and can cause an extension of the trace up to 40%. The hardness values continuously decrease from the surface to the material volume.
Anglický abstrakt
The usage of the high-energetic source of the electron beam enables a repeated surface quenching of the chosen areas of an engineering part surface. Different techniques of the electron beam deflections allow the creation of hardened layers of different shapes and above all the thicknesses. The deflection was tested at one point, six points, a line and a field on the material 42CrMo4 (1.7225). The effect of the process speed and defocusing of the electron beam was studied. The electron beam surface quenching resulted in a very fine martensitic microstructure with the hardness over 700 HV0.5. The thickness of the hardened layers depends on the type of deflection and depends directly on the process speed. The maximum observed depth was 1.49 mm. The electron beam defocusing affects the width of the hardened track and can cause an extension of the trace up to 40%. The hardness values continuously decrease from the surface to the material volume.
Klíčová slova anglicky
Electron beam, hardening, quenching, 42CrMo4, deflection
Vydáno
11.09.2017
ISSN
2367-749X
Kniha
International Scientific Journal "Material Science" "Nonequilibrium Phase Transformations"
Ročník
2017
Číslo
5
Strany od–do
194–197
Počet stran
4
BIBTEX
@inproceedings{BUT139692,
author="Jiří {Matlák} and Rudolf {Foret} and Ivo {Dlouhý},
title="Influence of the beam deflection od properties of the electron beam hardened layer",
booktitle="International Scientific Journal "Material Science" "Nonequilibrium Phase Transformations"",
year="2017",
volume="2017",
number="5",
month="September",
pages="194--197",
issn="2367-749X"
}