Detail publikace

On asymptotic relationships between two higher order dynamic equations on time scales

ŘEHÁK, P.

Anglický název

On asymptotic relationships between two higher order dynamic equations on time scales

Typ

článek v časopise ve Web of Science, Jimp

Jazyk

en

Originální abstrakt

We consider the $n$-th order dynamic equations $x^{\Delta^n}\!+p_1(t)x^{\Delta^{n-1}}+\cdots+p_n(t)x=0$ and $y^{\Delta^n}+p_1(t)y^{\Delta^{n-1}}+\cdots+p_n(t)y=f(t,y(\tau(t)))$ on a time scale $\mathbb{T}$, where $\tau$ is a composition of the forward jump operators, $p_i$ are real rd-continuous functions and $f$ is a continuous function; $\mathbb{T}$ is assumed to be unbounded above. We establish conditions that guarantee asymptotic equivalence between some solutions of these equations. No restriction is placed on whether the solutions are oscillatory or nonoscillatory. Applications to second order Emden-Fowler type dynamic equations and Euler type dynamic equations are shown.

Anglický abstrakt

We consider the $n$-th order dynamic equations $x^{\Delta^n}\!+p_1(t)x^{\Delta^{n-1}}+\cdots+p_n(t)x=0$ and $y^{\Delta^n}+p_1(t)y^{\Delta^{n-1}}+\cdots+p_n(t)y=f(t,y(\tau(t)))$ on a time scale $\mathbb{T}$, where $\tau$ is a composition of the forward jump operators, $p_i$ are real rd-continuous functions and $f$ is a continuous function; $\mathbb{T}$ is assumed to be unbounded above. We establish conditions that guarantee asymptotic equivalence between some solutions of these equations. No restriction is placed on whether the solutions are oscillatory or nonoscillatory. Applications to second order Emden-Fowler type dynamic equations and Euler type dynamic equations are shown.

Klíčová slova anglicky

higher order dynamic equation; time scale; asymptotic equivalence

Vydáno

23.04.2017

Nakladatel

Elsevier

ISSN

0893-9659

Ročník

2017

Číslo

73

Strany od–do

84–90

Počet stran

7

BIBTEX


@article{BUT135851,
  author="Pavel {Řehák},
  title="On asymptotic relationships between two higher order dynamic equations on time scales",
  year="2017",
  volume="2017",
  number="73",
  month="April",
  pages="84--90",
  publisher="Elsevier",
  issn="0893-9659"
}