Detail publikace
On asymptotic relationships between two higher order dynamic equations on time scales
ŘEHÁK, P.
Anglický název
On asymptotic relationships between two higher order dynamic equations on time scales
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
We consider the $n$-th order dynamic equations $x^{\Delta^n}\!+p_1(t)x^{\Delta^{n-1}}+\cdots+p_n(t)x=0$ and $y^{\Delta^n}+p_1(t)y^{\Delta^{n-1}}+\cdots+p_n(t)y=f(t,y(\tau(t)))$ on a time scale $\mathbb{T}$, where $\tau$ is a composition of the forward jump operators, $p_i$ are real rd-continuous functions and $f$ is a continuous function; $\mathbb{T}$ is assumed to be unbounded above. We establish conditions that guarantee asymptotic equivalence between some solutions of these equations. No restriction is placed on whether the solutions are oscillatory or nonoscillatory. Applications to second order Emden-Fowler type dynamic equations and Euler type dynamic equations are shown.
Anglický abstrakt
We consider the $n$-th order dynamic equations $x^{\Delta^n}\!+p_1(t)x^{\Delta^{n-1}}+\cdots+p_n(t)x=0$ and $y^{\Delta^n}+p_1(t)y^{\Delta^{n-1}}+\cdots+p_n(t)y=f(t,y(\tau(t)))$ on a time scale $\mathbb{T}$, where $\tau$ is a composition of the forward jump operators, $p_i$ are real rd-continuous functions and $f$ is a continuous function; $\mathbb{T}$ is assumed to be unbounded above. We establish conditions that guarantee asymptotic equivalence between some solutions of these equations. No restriction is placed on whether the solutions are oscillatory or nonoscillatory. Applications to second order Emden-Fowler type dynamic equations and Euler type dynamic equations are shown.
Klíčová slova anglicky
higher order dynamic equation; time scale; asymptotic equivalence
Vydáno
23.04.2017
Nakladatel
Elsevier
ISSN
0893-9659
Ročník
2017
Číslo
73
Strany od–do
84–90
Počet stran
7
BIBTEX
@article{BUT135851,
author="Pavel {Řehák},
title="On asymptotic relationships between two higher order dynamic equations on time scales",
year="2017",
volume="2017",
number="73",
month="April",
pages="84--90",
publisher="Elsevier",
issn="0893-9659"
}