Detail publikace

Použití neuronové sítě pro predikci životnosti izolačního materiálu elektrických rotačních strojů.

HAMMER, M.

Český název

Použití neuronové sítě pro predikci životnosti izolačního materiálu elektrických rotačních strojů.

Anglický název

The use of neural networks for the life prediction of insulating material of electric rotary machines

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

en

Originální abstrakt

The life of the insulating systems of electric rotary machines is strongly depend upon electrical and thermal features of the insulating material used. The subject of the diagnostic prediction is to specify the condition of insulation used. At present days, the most popular prediction tools are the methods of artifical inteligence, and one method is the neural networks. This paper is concentrated on the use of neural networks in the life prediction of Relanex insulating material that is applied as insulation of electrical machines windings. In this case the condition of insulating in a time step k+1 is predicate from input quantity in time steps k, k-1, k-2, etc. Anyway the prediction means forecastings of quantity in future from N previous measurement this or other quantities in the past. We have used the above-mentioned neural networks for the prediction of insulating materials that were programmed in Matlab 6 enviroment. All simulations and the values calculated were also obtained by means of this product.

Český abstrakt

V dnešní moderní době, která se vyznačuje technickým růstem a rozvojem je nezbytně nutné zajistit extenzivní a intenzivní využití technických prostředků a zařízení. Každý konkurence schopný výrobní proces se neobejde bez nutné kontroly a údržby výrobních zařízení, neboť každá nečekaná závada nebo porucha může značně ovlivnit výrobní produkci, zisk a životaschopnost výroby. Otázka životnosti a spolehlivosti izolačních materiálů elektrických strojů točivých je velmi důležitá, neboť izolační materiál, u elektrickým strojů pak izolace vinutí stroje patří k nejcitlivější a nejnákladnější části elektrického zařízení. Z tohoto důvodu se vyvíjejí nové a zdokonalují již známé diagnostické metody, které zhodnocují stav izolačního systému stroje v provozních podmínkách. Nejprogresivnějšími z diagnostických metod jsou pak ty, které nejen zhodnocují současný stav izolace, ale současně umožňují určitou prognózu její životnosti v daných provozních podmínkách.

Anglický abstrakt

The life of the insulating systems of electric rotary machines is strongly depend upon electrical and thermal features of the insulating material used. The subject of the diagnostic prediction is to specify the condition of insulation used. At present days, the most popular prediction tools are the methods of artifical inteligence, and one method is the neural networks. This paper is concentrated on the use of neural networks in the life prediction of Relanex insulating material that is applied as insulation of electrical machines windings. In this case the condition of insulating in a time step k+1 is predicate from input quantity in time steps k, k-1, k-2, etc. Anyway the prediction means forecastings of quantity in future from N previous measurement this or other quantities in the past. We have used the above-mentioned neural networks for the prediction of insulating materials that were programmed in Matlab 6 enviroment. All simulations and the values calculated were also obtained by means of this product.

Klíčová slova česky

predikce, elektrické rotační stroje

Klíčová slova anglicky

prediction, electric rotary machines

Vydáno

01.01.2003

Nakladatel

Zaklad Poligrafii Fundacji Rozwoju Uniwersytetu Gdanskiego

Místo

Polsko

ISBN

83-88829-69-6

Kniha

39th International Symposium on Electrical Machines

Počet stran

1

BIBTEX


@inproceedings{BUT13335,
  author="Miloš {Hammer},
  title="The use of neural networks for the life prediction of insulating material of electric rotary machines",
  booktitle="39th International Symposium on Electrical Machines",
  year="2003",
  month="January",
  publisher="Zaklad Poligrafii Fundacji Rozwoju Uniwersytetu Gdanskiego",
  address="Polsko",
  isbn="83-88829-69-6"
}