Detail publikace
LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS – THE CASE OF DISCRIMINANTS DIVISIBLE BY THREE
KLAŠKA, J. SKULA, L.
Anglický název
LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS - THE CASE OF DISCRIMINANTS DIVISIBLE BY THREE
Typ
článek v časopise ve Web of Science, Jimp
Jazyk
en
Originální abstrakt
In this paper we extend our recent results concerning the validity of the law of inertia for the factorization of cubic polynomials over the Galois field $F_p$, p being a prime. As the main result, the following theorem will be proved: Let $D\in Z$ and let $C_D$ be the set of all cubic polynomials $x^3 +ax^2 +bx+c\in Z[x]$ with a discriminant equal to $D$. If $D$ is square-free and $3\nmid h(-3D)$ where $h(-3D)$ is the class number of $Q(\sqrt(-3D))$, then all cubic polynomials in $C_D$ have the same type of factorization over any Galois field $F_p$ where $p$ is a prime, $p > 3$.
Anglický abstrakt
In this paper we extend our recent results concerning the validity of the law of inertia for the factorization of cubic polynomials over the Galois field $F_p$, p being a prime. As the main result, the following theorem will be proved: Let $D\in Z$ and let $C_D$ be the set of all cubic polynomials $x^3 +ax^2 +bx+c\in Z[x]$ with a discriminant equal to $D$. If $D$ is square-free and $3\nmid h(-3D)$ where $h(-3D)$ is the class number of $Q(\sqrt(-3D))$, then all cubic polynomials in $C_D$ have the same type of factorization over any Galois field $F_p$ where $p$ is a prime, $p > 3$.
Klíčová slova anglicky
cubic polynomial, factorization, Galois field
Vydáno
24.11.2016
Nakladatel
Slovenská akademie věd
Místo
SK
ISSN
0139-9918
Ročník
66
Číslo
4
Strany od–do
1019–1027
Počet stran
9
BIBTEX
@article{BUT129973,
author="Jiří {Klaška} and Ladislav {Skula},
title="LAW OF INERTIA FOR THE FACTORIZATION OF CUBIC POLYNOMIALS – THE CASE OF DISCRIMINANTS DIVISIBLE BY THREE",
year="2016",
volume="66",
number="4",
month="November",
pages="1019--1027",
publisher="Slovenská akademie věd",
address="SK",
issn="0139-9918"
}