Detail publikace
Asymptotic stability regions for certain two parametric full-term linear difference equation
TOMÁŠEK, P.
Anglický název
Asymptotic stability regions for certain two parametric full-term linear difference equation
Typ
článek ve sborníku ve WoS nebo Scopus
Jazyk
en
Originální abstrakt
We introduce an efficient form of necessary and sufficient conditions for asymptotic stability of the k-th order linear difference equation y(n+k)+a\sum_{j=1}^{k-1}(-1)^j y(n+k-j) + by(n)=0, where a,b are real parameters. The asymptotic stability region in (a,b) plane for this equation will be constructed and discussed with respect to some related linear difference equations.
Anglický abstrakt
We introduce an efficient form of necessary and sufficient conditions for asymptotic stability of the k-th order linear difference equation y(n+k)+a\sum_{j=1}^{k-1}(-1)^j y(n+k-j) + by(n)=0, where a,b are real parameters. The asymptotic stability region in (a,b) plane for this equation will be constructed and discussed with respect to some related linear difference equations.
Klíčová slova anglicky
Difference equation; Stability; The Schur-Cohn criterion
Vydáno
01.10.2016
Nakladatel
Springer
Místo
New York
ISBN
978-3-319-32855-3
ISSN
2194-1009
Kniha
Differential and Difference Equations with Applications
Ročník
164
Číslo edice
164
Strany od–do
323–330
Počet stran
8
BIBTEX
@inproceedings{BUT122444,
author="Petr {Tomášek},
title="Asymptotic stability regions for certain two parametric full-term linear difference equation",
booktitle="Differential and Difference Equations with Applications",
year="2016",
volume="164",
month="October",
pages="323--330",
publisher="Springer",
address="New York",
isbn="978-3-319-32855-3",
issn="2194-1009"
}