Detail publikace

Asymptotic stability regions for certain two parametric full-term linear difference equation

TOMÁŠEK, P.

Anglický název

Asymptotic stability regions for certain two parametric full-term linear difference equation

Typ

článek ve sborníku ve WoS nebo Scopus

Jazyk

en

Originální abstrakt

We introduce an efficient form of necessary and sufficient conditions for asymptotic stability of the k-th order linear difference equation y(n+k)+a\sum_{j=1}^{k-1}(-1)^j y(n+k-j) + by(n)=0, where a,b are real parameters. The asymptotic stability region in (a,b) plane for this equation will be constructed and discussed with respect to some related linear difference equations.

Anglický abstrakt

We introduce an efficient form of necessary and sufficient conditions for asymptotic stability of the k-th order linear difference equation y(n+k)+a\sum_{j=1}^{k-1}(-1)^j y(n+k-j) + by(n)=0, where a,b are real parameters. The asymptotic stability region in (a,b) plane for this equation will be constructed and discussed with respect to some related linear difference equations.

Klíčová slova anglicky

Difference equation; Stability; The Schur-Cohn criterion

Vydáno

01.10.2016

Nakladatel

Springer

Místo

New York

ISBN

978-3-319-32855-3

ISSN

2194-1009

Kniha

Differential and Difference Equations with Applications

Ročník

164

Číslo edice

164

Strany od–do

323–330

Počet stran

8

BIBTEX


@inproceedings{BUT122444,
  author="Petr {Tomášek},
  title="Asymptotic stability regions for certain two parametric full-term linear difference equation",
  booktitle="Differential and Difference Equations with Applications",
  year="2016",
  volume="164",
  month="October",
  pages="323--330",
  publisher="Springer",
  address="New York",
  isbn="978-3-319-32855-3",
  issn="2194-1009"
}