Detail předmětu

Matematika 2

FSI-Z2M Ak. rok: 2025/2026 Letní semestr

Zajišťuje ústav

Výsledky učení předmětu

Prerekvizity

Plánované vzdělávací činnosti a výukové metody

Způsob a kritéria hodnocení

Podmínky získání zápočtu (0-100 bodů, minimum pro získání zápočtu je 50):

  • dva zápočtové testy (každý max. 50 bodů); studentům, kteří nezískají v součtu 50 bodů, bude v průběhu prvního týdne zkouškového období umožněno napsat opravný test.

Podmínky získání zkoušky (0-100 bodů, minimum pro absolvování zkoušky je 50):

  • písemná část zkoušky (max. 85 bodů),
  • rozprava nad písemnou částí zkoušky a ústní část zkoušky (max. 15 bodů),
  • celkem je možno získat až 100 bodů, výsledná klasifikace se určí podle stupnice ECTS.

Přednáška: Účast je povinná a kontrolovaná vyučujícím, povoluje se jedna neomluvená absence. Stanovení způsobů náhrady další zmeškané výuky je v kompetenci vyučujícího.

Cvičení: Účast je povinná a kontrolovaná vyučujícím, povoluje se jedna neomluvená absence. Stanovení způsobů náhrady další zmeškané výuky je v kompetenci vyučujícího.

Jazyk výuky

čeština

Cíl

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Použití předmětu ve studijních plánech

Program B-KSI-P: Konstrukční inženýrství, bakalářský
obor ---: bez specializace, 5 kredity, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., povinná

Osnova


  • Nevlastní Riemannův integrál.

  • Obyčejné diferenciální rovnice 1. řádu (základní pojmy, směrové pole, počáteční úloha, analytické metody řešení vybraných typů nelineárních rovnic).

  • Obyčejné diferenciální rovnice vyšších řádů (základní pojmy, lineární diferenciální rovnice, analytické metody řešení nehomogenních lineárních rovnic s konstantními koeficienty, počáteční úloha, okrajová úloha).

  • Soustavy lineárních diferenciálních rovnic 1. řádu (analytické metody řešení homogenních lineárních soustav s konstantními koeficienty, převod diferenciálních rovnic vyšších řádu na soustavu diferenciálních rovnic 1. řádu).

  • Funkce více reálných proměnných (základní pojmy, graf, vrstevnice, vektorová funkce, vektorové pole).

  • Diferenciální počet funkcí více reálných proměnných (parciální derivace, derivace podle vektoru, gradient, spojitost, diferenciál, tečná rovina, lineární a kvadratická aproximace, potenciálové vektorové pole, potenciál, diferenciální operátory).

  • Dvojný integrál (dvojný integrál, Fubiniho věta, transformace do polárních souřadnic, aplikace).

  • Posloupnosti, úvod do nekonečných řad (číselná řada, konvergence, součet, geometrická řada, ukázka kritéria konvergence).

Cvičení

39 hod., povinná

Osnova


  • Nevlastní Riemannův integrál.

  • Řešení vybraných typů obyčejných diferenciálních rovnic 1. řádu, příklady použití v geometrii a fyzice.

  • Analytické metody řešení nehomogenních lineárních diferenciálních rovnic vyšších řádů s konstantními koeficienty, příklady použití v dynamice a pružnosti a pevnosti.

  • Analytické metody řešení homogenních lineárních soustav s konstantními koeficienty, převod diferenciálních rovnic vyšších řádů na soustavu diferenciálních rovnic 1. řádu, ilustrace řešení ve fázovém prostoru.

  • Základní vlastnosti funkcí více reálných proměnných, vektorové pole, příklady užití v geometrii a při výpočtu křivkového integrálu.

  • Výpočet parciálních derivací, lineární a kvadratická aproximace, potenciálové vektorové pole, výpočet potenciálu, lokální extrémy, příklady užití ve fyzice.

  • Výpočet dvojného integrálu, transformace integrálů, příklady použití v geometrii a fyzice.

  • Limita posloupnosti, užití kritérií konvergence číselných řad.