Detail předmětu

Stochastické procesy

FSI-SSP Ak. rok: 2025/2026 Letní semestr

Předmět obsahuje úvod do teorie náhodných procesů: typy a základní vlastnosti,stacionarita, autokovarianční funkce, spektrální hustota, příklady typických procesů, parametrické a neparametrické metody dekompozice časových řad, identifikace period, ARMA procesy,  Markovovy řetězce. Studenti se seznámí s užitím těchto metod pro popis a predikci časových řad na PC pomocí vhodných softwarů.

Zajišťuje ústav

Výsledky učení předmětu

Prerekvizity

Plánované vzdělávací činnosti a výukové metody

Způsob a kritéria hodnocení

Jazyk výuky

čeština

Cíl

Cílem předmětu je seznámit studenty se základy teorie stochastických procesů a s používanými modely pro analýzu časových řad i algoritmy odhadu jejich parametrů. Ve cvičení se studenti učí na simulovaných nebo reálných datech prakticky aplikovat teoretické postupy formou projektu pomocí vhodného softwaru. Výsledkem je projekt vyhodnocení a predikce reálných časových řad.

Předmět umožňuje studentům získat základní znalosti o modelování stochastických procesů (dekompoziční model, ARMA, Markovovy řetězce) a způsobech výpočtu odhadu jejich nejrůznějších charakteristik s cílem popsat mechanismus chování procesu na základě pozorování jeho časové řady. Student tak zvládne základní metody pro vyhodnocování reálných dat.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Použití předmětu ve studijních plánech

Program N-MAI-P: Matematické inženýrství, magisterský navazující
obor ---: bez specializace, 5 kredity, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Osnova

Stochastický proces, typy.
Striktní a slabá stacionarita.
Autokorelační funkce (vlastnosti). Výběrová autokorelační funkce.
Dekompoziční model (aditivní, multiplikativní), stabilizace rozptylu. Odhad trendu bez sezónnosti (lineární filtry, polynomiální regrese).
Odhad trendu se sezónností. Testy náhodnosti.
Lineární procesy.
ARMA(1,1) procesy. Asymptotické vlastnosti odhadů střední hodnoty a autokorelační funkce.
Nejlepší lineární predikce v ARMA(1,1). Durbin-Levinsonův a inovační algoritmus.
ARMA(p,q) procesy, kauzalita, invertibilita, parciální autokorelační funkce.
Spektrální hustota (vlastnosti).
Identifikace periodických komponent: periodogram, testy periodicity.
Nejlepší lineární predikce, Yuleův-Walkerův systém rovnic, chyba predikce.
ARIMA modely a nestacionární stochastické procesy.


Markovovy řetězce.

Cvičení s počítačovou podporou

13 hod., povinná

Osnova

Načítání, ukládání a vizualizace dat, simulace stochastických procesů.
Momentové charakteristiky stochastických procesů
Detekce heteroskedasticity. Transformace stabilizující rozptyl (mocninná, Box-Coxova).
Užití lineárního regresního modelu při dekompozici časové řady.
Separace sezónní složky.
Odstranění šumu pomocí lineární filtrace (metoda klouzavých vážených průměrů).
Filtrování pomocí po částech polynomiální regrese, exponenciálního vyrovnávání.
Testy náhodnosti.
Simulace, identifikace a odhad parametrů modelu ARMA.
Predikce procesu.
Testování významnosti (parciálních) korelací.
Identifikace periodických složek, periodogram, testování.


Markovovy řetězce.
Konzultace k projektům studentů.