Detail předmětu

Matematika I

FSI-1M Ak. rok: 2024/2025 Zimní semestr

Zajišťuje ústav

Výsledky učení předmětu

Prerekvizity

Plánované vzdělávací činnosti a výukové metody

Způsob a kritéria hodnocení

Jazyk výuky

čeština

Cíl

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Použití předmětu ve studijních plánech

Program B-MET-P: Mechatronika, bakalářský
obor ---: bez specializace, 9 kredity, povinný

Program B-PRP-P: Profesionální pilot, bakalářský
obor ---: bez specializace, 9 kredity, povinný

Program B-PDS-P: Průmyslový design ve strojírenství, bakalářský
obor ---: bez specializace, 9 kredity, povinný

Program B-ENE-P: Energetika, bakalářský
obor ---: bez specializace, 9 kredity, povinný

Program C-AKR-P: Akreditované předměty v CŽV, celoživotní vzdělávání v akr. stud. programu
obor CZS: Předměty zimního semestru, 9 kredity, volitelný

Program B-ZSI-P: Základy strojního inženýrství, bakalářský
obor MTI: Materiálové inženýrství, 9 kredity, povinný

Program B-ZSI-P: Základy strojního inženýrství, bakalářský
obor STI: Základy strojního inženýrství, 9 kredity, povinný

Typ (způsob) výuky

 

Přednáška

52 hod., nepovinná

Vyučující / Lektor

Osnova

1.týden: Základní pojmy matematické logiky a operace s množinami, matice a determinanty (transponování, sčítání a násobení matic, význačné typy matic).
2.týden: Matice a determinanty (determinanty a jejich vlastnosti, regulární a singulární matice, inverzní matice, výpočet inverzní matice pomocí determinantů), soustavy lineárních rovnic (Cramerovo pravidlo, Gaussova eliminační metoda).
3.týden: Dokončení soustav lineárních rovnic (Frobeniova věta, výpočet inverzní matice eliminační metodou), vektorový počet (operace s vektory, skalární součin, vektorový součin, smíšený součin vektorů).
4.týden: Analytická geometrie v prostoru (úlohy o přímkách a rovinách, klasifikace kuželoseček a kvadratických ploch), pojem funkce (definiční obor a obor hodnot, ohraničenost, sudost a lichost, periodičnost, monotonnost, složená funkce, funkce prostá a inverzní).
5.týden: Základní elementární funkce (funkce exponenciální a logaritmická, obecná mocnina, funkce goniometrické a cyklometrické), polynomy (kořen polynomu, základní věta algebry, násobnost kořene, rozklad na součin), zavedení pojmu funkce racionálně lomené.
6.týden: Posloupnosti a jejich limity, limita funkce, spojitost funkce.
7.týden: Derivace funkce (základní úloha diferenciálního počtu, pojem derivace funkce, výpočet derivace, geometrické aplikace derivace), výpočet limity funkce L´ Hospitalovým pravidlem.
8.týden: Monotonnost a extrémy funkce, inflexní body, konvexnost a konkávnost, asymptoty, vyšetřování průběhu funkce.
9.týden: Diferenciál funkce, Taylorův polynom, křivky a funkce zadané parametricky neb polárně (derivace funkce zadané parametricky, transformační rovnice mezi parametrickými a polárními rovnicemi).
10.týden: Primitivní funkce (pojem, vlastnosti a základní vzorce), metoda per partes a metoda substituční.
11.týden: Integrace racionálně lomené funkce (pokud jmenovatel nemá komplexní kořeny), výpočet primitivní funkce substituční metodou u některých elementárních funkcí.
12.týden: Riemannův integrál (základní úloha integrálního počtu, pojem a vlastnosti Riemannova integrálu), výpočet Riemannova integrálu (Leibnizova – Newtonova formule).
13.týden: Aplikace určitého integrálu (plošný obsah rovinné množiny, délka oblouku křivky, objem a obsah pláště rotačního tělesa), nevlastní integrál.

Cvičení s počítačovou podporou

8 hod., povinná

Osnova

Počítačová podpora probíhá na bázi programu MAPLE v počítačové učebně. Povinná témata: Jednoduchá aritmetika, použití MAPLE k výpočtům a vyčíslení výrazů, řešení rovnic a hledání kořenů polynomů, graf funkce jedné proměnné, symbolické výpočty (výrazy, výpočet derivace a primitivní funkce).