Detail předmětu
Algoritmy umělé inteligence
FSI-VAI Ak. rok: 2024/2025 Zimní semestr
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Prerekvizity
Plánované vzdělávací činnosti a výukové metody
Způsob a kritéria hodnocení
Požadavky pro udělení zápočtu: Vytvoření funkčních softwarových projektů, využívajících některé z probíraných metod UI a vypracování prezentace nějaké neprobírané metody UI. Celkem může student získat 40 bodů za cvičení (30 za projekty a 10 za prezentaci) a 60 bodů za zkoušku, celkem tedy max. 100 bodů. Hodnocení probíhá dle ECTS, tj. pro úspěšné absolvování musí student v každé části získat alespoň polovinu bodů (20 a 30).
Účast na přednáškách je žádoucí, na cvičeních povinná. Výuka probíhá podle týdenních plánů. Způsob nahrazení zameškaných cvičení je plně v kompetenci vyučujícího.
Jazyk výuky
čeština
Cíl
Znalost základních prostředků umělé inteligence a možností jejich použití při řešení inženýrských úloh.
Pochopení základních metod umělé inteligence a schopnost jejich implementace.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Použití předmětu ve studijních plánech
Program N-AIŘ-P: Aplikovaná informatika a řízení, magisterský navazující
obor ---: bez specializace, 4 kredity, povinný
Program N-MAI-P: Matematické inženýrství, magisterský navazující
obor ---: bez specializace, 4 kredity, povinně volitelný
Program C-AKR-P: Akreditované předměty v CŽV, celoživotní vzdělávání v akr. stud. programu
obor CZS: Předměty zimního semestru, 4 kredity, volitelný
Typ (způsob) výuky
Přednáška
26 hod., nepovinná
Vyučující / Lektor
Osnova
1. Úvod do umělé inteligence.
2. Stavový prostor, neinformované prohledávání.
3. Informované prohledávání stavového prostoru.
4. Řešení problémů rozkladem na podproblémy, metody prohledávání AND/OR grafu.
5. Metody hraní her.
6. Úlohy se splňováním omezení.
7. Predikátová logika a rezoluční metoda.
8. Hornova logika a logické programování.
9. Reprezentace, využívání a učení znalostí.
10. Reprezentace a zpracování neurčitosti.
11. Bayesovské a rozhodovací sítě.
12. Netradiční logiky.
13. Markovské rozhodovací procesy.
Cvičení s počítačovou podporou
26 hod., povinná
Vyučující / Lektor
Osnova
1. Úvodní motivační příklady.
2. Metody neinformovaného prohledávání stavového prostoru.
3. Metody informovaného prohledávání stavového prostoru.
4. Algoritmus A* a jeho modifikace.
5. Metody prohledávání AND/OR grafu.
6. Metody hraní her.
7. Úlohy se splňováním omezení.
8. Predikátová logika a rezoluční metoda.
9. Logické programování a jazyk Prolog.
10. Řešení úloh UI v Prologu.
11. Učení symbolických znalostí.
12. Bayesovské sítě.
13. Pravděpodobnostní a fuzzy logické programování.