Detail předmětu

Matematické metody v teorii proudění

FSI-SMM Ak. rok: 2023/2024 Zimní semestr

Fyzikální základy mechaniky tekutin: zákony zachování hmoty, hybnosti a energie. Vlastnosti hyperbolických rovnic, speciálně Eulerových rovnic popisujících proudění neviskózních stlačitelných tekutin. Numerické modelování Eulerových rovnic metodou konečných objemů a numerické modelování nestlačitelných viskózních tekutin metodou tlakových korekcí (algoritmus SIMPLE).

Zajišťuje ústav

Výsledky učení předmětu

Studenti se seznámí se základními postupy modelování proudění tekutin: fyzikální zákony, matematická analýza rovnic popisujících proudění tekutin (Eulerovy a Navierovy-Stokesovy rovnice), volba vhodné numerické metody (která vychází z fyzikální a matematické podstaty rovnic) a počítačové modelování navržené numerické metody (preprocesing = tvorba sítě, numerický řešič, postprocesing = zobrazení žádáných fyzikálních veličin). Získané znalosti si studenti ověří a prohloubí zpracováním zadaného projektu.

Prerekvizity

Parciální diferenciální rovnice evolučního typu, funkcionální analýza, numerické metody řešení parciálních diferenciálních rovnic.

Plánované vzdělávací činnosti a výukové metody

Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.

Způsob a kritéria hodnocení

PODMÍNKY PRO ZÍSKÁNÍ ZÁPOČTU: Účast ve cvičeních, zpracování zadané práce, ve které studenti zúročí poznatky získané na přednáškách. Podmínkou udělení zápočtu je zpracování a prezentace zadané práce.


ZKOUŠKA: je ústní. Za zkoušku student obdrží 0 až 100 bodů.


HODNOCENÍ: se bude odvíjet od získaných bodů u zkoušky.


KLASIFIKACE: 100-90: A (výborně), 89-80: B (velmi dobře), 79-70: C (dobře), 69-60: D (uspokojivě), 59-50: E (dostatečně), 49-0: F (nevyhovující).

Jazyk výuky

čeština

Cíl

Předmět slouží jako úvodní seznámení s výpočtovými metodami pro modelování proudění tekutin. Pro stlačitelné proudění je vyložena metoda konečných objemů, pro nestlačitelné proudění metoda tlakových korekcí. Studenti by měli pochopit, že teprve znalost podstatných fyzikálních a matematických aspektů jednotlivých typů proudění jim umožní efektivní volbu vhodné numerické metody resp. odpovídajícího softwarového produktu. Důležitou součástí předmětu je samostatná práce na zadaném projektu.

Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky

Účast na přednáškách je žádoucí, účast ve cvičeních je povinná. Výuka probíhá podle týdenních rozvrhů. Způsob náhrady zameškané výuky je plně v kompetenci cvičícího.

Použití předmětu ve studijních plánech

Program N-MAI-P: Matematické inženýrství, magisterský navazující
obor ---: bez specializace, 4 kredity, povinný

Typ (způsob) výuky

 

Přednáška

26 hod., nepovinná

Vyučující / Lektor

Osnova

1. Materiálová derivace, transportní věta, zákony zachování hmoty a hybností.
2. Zákon zachování energie, konstituční vztahy, stavové rovnice.
3. Eulerovy a Navierovy-Stokesovy rovnice, počáteční a okrajové podmínky.
4. Hyperbolický systém a příklady hyberbolických systémů
5. Klasické řešení hyperbolického systému.
6. Slabé řešení hyperbolického systému, nespojitosti v řešení.
7. Riemannův problém pro lineární a nelineární úlohu, klasifikace vln.
8. Metoda konečných objemů, časová a prostorová diskretizace.
9. Lokální chyba, stabilita, konvergence numerické metody.
10. Godunovova metoda, Riemannův numerický tok
11. Další numerické toky Godunova typu.
12. Okrajové podmínky, metody druhého řádu.
13. Metoda konečných objemů pro viskózní nestlačitelné proudění: algoritmus SIMPLE na pravidelné obdélníkové síti.

Cvičení s počítačovou podporou

13 hod., povinná

Vyučující / Lektor

Osnova

Ukázky řešení vybraných modelových úloh na počítači. Vypracování semestrální práce.