Detail předmětu
Termomechanika
FSI-6TT Ak. rok: 2021/2022 Letní semestr
Základní stavové veličiny. Rovnice stavu ideálního plynu. Směs ideálních plynů. První zákon termodynamiky – teplo, práce, vnitřní energie, entalpie. Druhý zákon termodynamiky, entropie. Vratné a nevratné děje plynů. Tepelné cykly. Termodynamika par, parní tabulky, diagramy. Clausius – Clapeyronova rovnice. Termodynamické děje v parách. Termodynamika vlhkého vzduchu. Určující veličiny, tabulky, diagram. Izobarické úpravy vzduchu, odpařování z volné hladiny. Termodynamika proudění plynů a par. Adiabatické proudění dýzami. Cykly plynových a parních tepelných strojů. Kompresory. Cykly chladicích zařízení a tepelných čerpadel. Základy přenosu tepla. Stacionární přenos tepla vedením. Přenos tepla konvekcí, teorie podobnosti. Prostup tepla, výměníky tepla. Přenos tepla zářením. Vzájemné záření mezi povrchy.
Garant předmětu
Zajišťuje ústav
Výsledky učení předmětu
Schopnost provádět technické výpočty v oblasti termodynamiky a přenosu tepla: Výpočet tepelných strojů a chladicích zařízení. Tepelné bilance materiálových i strojních soustav a zařízení. Výpočet nebo modelování přenosu tepla v strojních soustavách, v plynech, parách, ve stavbách, při technologických procesech.
Prerekvizity
Matematika, Fyzika, Hydromechanika
Plánované vzdělávací činnosti a výukové metody
Předmět je vyučován formou přednášek, které mají charakter výkladu základních principů a teorie dané disciplíny. Cvičení je zaměřeno na praktické zvládnutí látky probrané na přednáškách.
Způsob a kritéria hodnocení
Písemná a ústní zkouška s důrazem na teorii i řešení praktických příkladů.
Jazyk výuky
čeština
Cíl
Schopnost provádět technické výpočty v oblasti termodynamiky a přenosu tepla. Aplikovat teoretické znalosti v konstrukčních i technologických oborech.
Vymezení kontrolované výuky a způsob jejího provádění a formy nahrazování zameškané výuky
Kontrolovaná účast na cvičeních, v případě omluvené absence výpočet náhradních příkladů. Vypracovat test během semestru.
Použití předmětu ve studijních plánech
Program B-MAI-P: Matematické inženýrství, bakalářský
obor ---: bez specializace, 6 kredity, povinný
Program B-STR-P: Strojírenství, bakalářský
obor SSZ: Stavba strojů a zařízení, 6 kredity, povinný
Typ (způsob) výuky
Přednáška
39 hod., nepovinná
Vyučující / Lektor
Osnova
Základní pojmy. Základní zákony a stavová rovnice ideálního plynu. Tepelné kapacity. Směsi ideálních plynů, Daltonův zákon, stavová rovnice směsi a jejích složek.
První zákon termodynamiky a jeho dvě matematické formy. Teplo, objemová a technická práce, vnitřní energie, entalpie.
Vratné děje ideálních plynů, změna stavových veličin, výpočet tepla, vnitřní energie, entalpie, objemové a technické práce a znázornění v p-v diagramu.
Tepelné cykly, termická účinnost, práce. Carnotův cyklus. 2. zákon termodynamiky. Entropie a obecné rovnice změn entropie. Znázornění vratných dějů a Carnotova cyklu v T-s diagramu. Obrácený a nevratný Carnotův cyklus. Nevratné děje v technické praxi.
Van der Waalsova stavová rovnice reálných plynů. Termodynamika par, p-v, T-s a h-s diagramy a tabulky par. Clausiova-Clapeyronova rovnice. Termodynamické děje v parách, změna stavových veličin, výpočet tepla, vnitřní energie, entalpie, objemové a technické práce.
Termodynamika vlhkého vzduchu. Definice vlhkosti a entalpie vlhkého vzduchu, diagram entalpie-měrná vlhkost. Ochlazování, ohřev, míšení a vlhčení vzduchu, adiabatické odpařovaní z volné hladiny. Psychrometr.
První zákon termodynamiky pro otevřenou soustavu a jeho rovnice. Rovnice kontinuity, Bernoulliho, Prandtlova trubice, rychlost zvuku, Machovo číslo. Adiabatické proudění ideálního plynu a páry zužujícím se otvorem a Lavalovou dýzou. Postup při jejich výpočtu. Činnost Lavalovy dýzy při různých vstupních podmínkách a vliv protitlaku na její činnost.
Cykly tepelných plynových a parních strojů. Spalovací motory, plynové turbiny, reakční motory.
Rankinův–Clausiův cyklus. Kompresory. Cykly chladicích zařízení a tepelných čerpadel.
Přenos tepla vedením. 3D diferenciální rovnice stacionárního a nestacionárního vedení tepla s vnitřním zdrojem v kartézských a válcových souřadnicích. Tepelná a teplotní vodivost. Stacionární vedení tepla jednoduchou a složenou rovinnou a válcovou stěnou.
Přenos tepla konvekcí. 3D Fourierova-Kirchoffova rovnice, Navierovy-Stokesovy rovnice, okrajové podmínky. Teorie podobnosti v tepelné konvekci. Odvození kritérií podobnosti. Kriteriální rovnice pro nucenou a přirozenou konvekci.
Stacionární prostup tepla jednoduchou a složenou rovinnou a válcovou stěnou. Výměníky tepla, střední teplotní logaritmický spád, postup výpočtu.
Přenos tepla zářením – základní zákony (1. a 2. Kirchhoffův, Planckův, Stefanův-Boltzmanův, Wienův). Záření mezi rovnoběžnými stěnami a mezi obklopujícími se povrchy.
Cvičení
26 hod., povinná
Vyučující / Lektor
Osnova
Výpočty:
Stavové veličiny ideálního plynu a směsi ideálních plynů. Vratné změny ideálního plynu – stavové veličiny, teplo, práce, změny vnitřní energie, entropie. Carnotův cyklus. Termodynamické děje v parách – stavové veličiny, teplo, práce, změny vnitřní energie, entropie. Základní parametry vlhkého vzduchu a jeho úprav (ohřev, ochlazování, míšení, vlhčení). Cykly spalovacích motorů a plynových turbin. Rankinův-Clausiův cyklus, cyklus chlad. zařízení. Kompresory. Adiabatické proudění zužujícím se otvorem nebo Lavalovou dýzou. Návrh jejích hlavních rozměrů. Stacionární vedení tepla rovinnou a válcovou stěnou, jednoduchou nebo složenou. Součinitel přestupu tepla konvekcí a tepelný tok při konvekci. Stacionární prostup tepla – součinitel prostupu tepla, tepelný tok. Základní výpočet výměníku tepla. Záření mezi obklopujícími se povrchy.