Course detail
Selected Chapters of Electroengineering
FSI-RE0 Acad. year: 2021/2022 Winter semester
The course deals with the basic laws of electromagnetism applied to the theory of electrical machines. Also discussed are the following topics: Magnetic circuits of electrical machines. Basic voltage equations, equivalent circuit diagrams, phase diagrams, the basic electrical connections of electrical machines. Energy and power flow diagrams, losses and efficiency. Torque equation. Electrical machines' performance. Nonsymmetrical loading. Influence of higher harmonics. Basic characteristics of electrical machines.
Supervisor
Learning outcomes of the course unit
Students will acquire basic knowledge of electromechanical energy conversion, and will be made familiar with basic constructional parts of electrical machines, as well as principles of electrical machines operation. Also dealt with are the following topics: Single-phase and multiphase transformers. Parallel operation. Three-phase induction motor. Generation of revolving magnetic field. Torque characteristic, starting of induction motors. Single-phase induction motor. Three-phase induction motor on single-phase mains. DC machine principle of operation. DC generators. Performance of DC motors.
Prerequisites
Basic laws and terminology of electrical and mechanical engineering. Three-phase systems.
Planned learning activities and teaching methods
The course is taught through lectures explaining the basic principles and theory of the discipline. Teaching is suplemented by practical laboratory work.
Assesment methods and criteria linked to learning outcomes
Control tests – 20 points
Individual projects – 15 points
Written and oral exam – 65 points
Language of instruction
Czech
Aims
The course is intended for students majoring in branches other than mechatronics. The aim is to acquaint the students with the principles of operation and performance of transformers, induction machines, DC machines and synchronous machines. The theoretical knowledge is verified in laboratory exercises.
Specification of controlled education, way of implementation and compensation for absences
Attendance at practical training is obligatory.
The study programmes with the given course
Programme N-MET-P: Mechatronics, Master's
branch ---: no specialisation, 2 credits, elective
Type of course unit
Lecture
26 hours, optionally
Syllabus
1. Basic laws of electromagnetism related to electrical machines.
2. Principle of electromechanical energy conversion.
3. Transformers. Ideal transformer, actual transformer, basic equations.
4. Principle of operation and construction of power transformers.
5. Three-phase transformers, winding connection, parallel operation.
6. Magnetic circuit and winding of electrical machines. Principle of operation of induction machine, generation of revolving magnetic field.
7. Equivalent circuit diagram, fundamental equations and torque characteristics.
8. Starting of induction machines speed control.
9. Single-phase induction machine. Three-phase induction machine in single-phase mains. The higher harmonics influence.
10. Synchronous machine. Principle of operation and construction.
11. Theory of nonsalient machine. Torque characteristic, synchronous machine with individual load and parallel operation.
12. DC machines. Principle of operation and construction, fundamental equations.
13. DC machines steady state performance.
Laboratory exercise
26 hours, compulsory
Syllabus
1. Work safety and the main parts of rotary electrical machines. Assembly and disassembly of electrical machines.
2. Principle of torque measurement, dynamometer.
3. No load a short circuit transformer test.
4. Winding connection. Load test and efficiency, measurement of a transformer.
5. Three-phase induction motor. Winding connection. No load and blocked rotor test. Induction motor parameter determination.
6. Measurement of induction motor torque characteristics.
7. Induction motor starting.
8. Synchronous machine parallel operating with mains.
9. Measurement of torque characteristics.
10. Parameter determination of synchronous machine with salient poles and with nonsalient rotor.
11. DC machine. No load test. Self-excitation of shunt generator.
12. Connection of DC motor to mains. Speed control characteristics of DC motors.
13. Evaluation.